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Summary of Section 1: ‘Democratizing Thermophysical Queries’

A custom ChatGPT is developed with the ability to query thermophysical / state prop-

erties from a custom (web-accessible) microservice. The microservice is developed with

Coolprop and Flask packages and hosted on Google Cloud Run. This software solution en-

ables installation-free natural language query relevant to thermodynamic cycles, applicable

to lecture (instructor-oriented) and tutor (student-oriented) contexts. The example shows

the drawing of saturation domes for select materials (but works for any material supported

by CoolProp), and the drawing of isobaric contours.

Summary of Section 2: ‘Extensible GPT Client for Distributed Learning’

An extensible OpenAI API client is developed to allow fully customizable GPT instantiation.

The client converts arbitrary user-provided Python functions into GPT callable actions, and

accepts user-provided instructions to customize the GPT domain knowledge as well as con-

versation flow. Both features are desirable in an classroom context where the GPT compre-

hension and utilization of course concepts are key requirements for a learning enhancement

module. The example shows a custom GPT which aids in analysis and understanding of the

self-buckling phenomenon in mechanics.
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1 Democratizing Thermophysical Queries

CoolProp is a C++ library (with a Python interface) with support for thermophysical prop-

erties calculation of a specified material. This functionality is beneficial in a thermodynamics

curriculum: allowing students to focus on essential thermodynamics concepts and eliminat-

ing table-lookup as a requisite skill for demonstrating material comprehension. Spread of

this class of enabling software in the classroom is slowed by technical challenges (distribu-

tion, installation, and maintenance) that are unrelated to pedagogical considerations. I will

feature a solution for this specific software that bypass the challenges, but this approach is

generalizable; I have applied similar treatments to other software which can be a topic for

future discussions.

For a CoolProp solution, a custom GPT and surrounding software infrastructure were

developed: the latter being necessitated by the unavailability of the CoolProp package in the

GPT Python environment. The main component of the infrastructure is a web-accessible

microservice built on the CoolProp package, Flask framework, and Google Cloud Run service.

The microservice has three endpoints (analogous to functions): ‘/dome’ produces a discrete

data set from the saturation dome for a specified material, ‘/ts/isobaric’ produces a discrete

data set from a T -s isobaric curve, and ‘/propssi’ returns the value given from the ‘PropsSI’

function in CoolProp.

CoolPropGPT, our custom GPT, has access to our CoolProp microservice through a web

Application Protocol Interface (API): the integration enables user query for thermophysi-

cal properties and drawing of quantitative curves without user-installation of any software.

The GPT configurations for CoolPropGPT are shown in Figure 1. ‘Instructions’ (Figure

1a) are natural language description of the role and behavior of the GPT, the knowledge

file interp dat.py interpolates the resultant data set returned from the microservice for

plotting, and the ‘Schema’ (Figure 1b) exposes the microservice API to CoolPropGPT.

(a) Main Configuration. (b) Actions Configuration.

Figure 1: Screenshots of CoolPropGPT configurations.
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Screenshots from an example CoolPropGPT conversation thread are shown in Figure 2,

showcasing natural-language user interaction with the CoolPropGPT which can easily extend

to Instructor-GPT or student-GPT interactions. In Figure 2a, the user requests a saturation

dome for R134a, CoolPropGPT makes a query to the microservice, and the CoolPropGPT

draws the curve using the return arrays in conjunction with the interp dat.py code. In

Figure 2b, a similar interaction occurs: note the adaptability of contextual awareness of GPT

to respond appropriately to user intention. In Figure 2c, the user requests an isobaric curve

to be plotted on top of the existing plot, and GPT generates the curve in a similar fashion

and it describes the relevance of the saturation dome to an isobaric curve which crosses the

dome.

(a) R134a Dome Request (b) Water Dome Request (c) Isobaric Curve Request

Figure 2: Screenshots of User-CoolPropGPT-Microservice interaction.

From this example conversation thread, one can imagine the application of this microser-

vice from an instructor perspective: instead of a generic T -s diagram, the instructor can

take a real problem statement for a specific material and specific thermodynamic cycle (e.g.,

Rankine cycle with R134a) and let GPT draw a quantitative diagram. They can later make

quantitative inquiries to CoolPropGPT about the curves or modify the problem with natu-

ral language description to rapidly produce a plot for di↵erent problems without extensive

preparatory testing for those specific problems.

From a student perspective, this microservice-enabled custom GPT can be used for in-

teractive learning i.e., the custom GPT serves as a self-contained interactive module for a

thermodynamics course. With this GPT, the students can solve thermodynamic cycle prob-

lems without table-lookup impeding their learning process. Additionally, CoolPropGPT can

provide explanations of how thermodynamic processes relate to di↵erent curves on the plot.

Out of the box, the fidelity of this feature is restricted by how well that understanding is

encoded in the pre-training phase, but its base understanding can be easily overwritten with

carefully crafted pedagogical ‘instructions’ provided by the course instructor.
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2 Extensible GPT Client for Distributed Learning

This next example is that of an integration of OpenAI API and custom-tailored software

which allows flexibility that cannot be achieved with existing paid ChatGPT o↵erings. gluon
is an LLM client written in Python, compatible with both OpenAI APIs as well as Google

Vertex APIs. Some of its features include (i) user-customizable API parameters (e.g., model

and temperature) programmatically, (ii) custom shortcuts for redirecting GPT outputs and

inputs to/from the local filesystem and shell environment, and (iii) an extensible framework

for incorporating user-generated programs into GPT-accessible actions.

To demonstrate the flexibility of gluon, we focus on producing a custom gluon GPT for

the phenomenon of self-buckling which can be a subject of an introductory mechanics course.

The ‘instructions’ and pedagogical content are based on that written by Prof. Anthony

Patera (MIT) for an in-class demonstration using the ChatGPT construct with some minor

modifications. The necessary ingredients of gluon GPT mirrors that of a custom GPT, but

are local to the user environment and can be manipulated programmatically. One potential

use case of such a feature in a department-wide deployment may be to automatically update

‘core’ instructions that are common to all GPTs in a specific course or even to all GPTs for

a large set of courses. We will refer to this gluon GPT as SelfBucklingGPT.

The main ingredient of generating gluonGPTs are ‘instructions’ contained in file system.txt
(shown in Figure 3 for SelfBucklingGPT). At the start of every conversation, system.txt
is read from the working directory, enabling convenient organization of development and

running of each gluon GPT. Figure 3a shows the top of system.txt in which the content of

general instructions.txt (Figure 3c) is substituted as well as the first parts of the specific

instructions for SelfBucklingGPT. We note that general instructions.txt is substituted

with syntax R{...}, enabling one common file to be developed for a broad class of custom

GPTs as alluded to prior: demonstrating the strength of gluon extensibility. pedagogy.txt
3b is a natural language pedagogical description of the self-buckling phenomenon.

(a) Start of system.txt. (b) Pedagogy in system.txt. (c) general instructions.txt

Figure 3: Screenshots of gluon instructions.
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In Figure 4, we showcase more details of SelfBucklingGPT and an example thread pro-

duced by SelfBucklingGPT. First, in Figure 4a, we show the contents of config.json and

functions/selfbuckling.json. The first file specifies GPT model and temperature, but

more importantly, it exposes selfbuckling as an available Python function. The second file

describes the function argument and outputs so GPT knows to access it when appropriate

through the OpenAI API.

(a) More configurations. (b) Conversation start. (c) Conversation end.

Figure 4: Screenshots of gluon configurations and thread.

This separation of the core extensible OpenAI client and pedagogical material and scripts

associated with a specific course concept allows continual development of the tool (gluon)
while the instructors can focus on refining the pedagogical content in terms of student and

GPT comprehension. Another positive outcome of this separation is that the pedagogical

content (and scripts) can be developed by multiple instructors, allowing for wide deployment

of GPT in multiple MechE courses.

Furthermore, gluon can be easily distributed to students and instructors with the only

dependency being Docker: for which there are compatible installers for a wide array of

operating systems. Although not as dependency-free as the ChatGPT solution shown in the

previous example, it is fairly close compared to other common solutions.
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