Streamfunction Solution for 2D Flow
A Nek5000 Example

Kento Kaneko (kaneko@mit.edu)

May 15, 2024

Note: This is a casual document written to supplement the Nek5000
streamfunction example downloadable from kaneko.io/f/psi.tgz. Almost all
of the introduced concepts are assumed to be common knowledge in the
discipline of inviscid flows for which the author has no formal education in,
and therefore do not claim any novelty of — nor provide proper attributions
for the concepts.

Introduction

Streamfunction is a useful object in 2D flow because it is a scalar field
that describes the flow field: allowing visualization of the flow through its
isocontours. The streamfunction 1 satifies the relations

Ay = 1, (1)
- :cd} = U2; (2)

u1 and uo are the components of the velocity field w. Furthermore, we can
write it as a solution to the elliptic equation

V) = —w in Q, (3)

where w = (V x u) - é3 and Q) is the problem domain. Thus if we have
a velocity solution at a particular time, it appears trivial to solve for the
streamfunction, but we are missing the boundary conditions. In the follow-
ing, we consider types of domains (and boundary conditions) whose bound-
aries (if there are any) are coincident with a streamfunction isocontour.
Other boundary types such as inflow / outflow can be considered with mi-
nor modifications, but are not the subject of this document.

https://kaneko.io/f/psi.tgz

Periodic Domain

For a purely periodic domain, boundaries with prescribed conditions do not
exist, therefore the equation can be solved as-is with the weak formulation:
Find ¢ € X = H'(Q) s.t.

a(v,¥) = m(v,w), Yo in X, (4)

where
a(u,v):/QVu-Vv, m(u,v):/guv. (5)

Note that constant functions are in the kernel of a: the solution is unique
up to a constant.

Singly-Connected Boundary Domain

For a domain with a single connected boundary which itself is a streamline
(e.g., wall-bounded domain, periodic domain with cylinder occlusions, etc.),
we can apply an arbitrary constant essential boundary condition. We choose
value 0 for simplicity. Then we solve the problem:

Find vy € Xo = H}(Q) s.t.

a(Uﬂﬂo) = m(v,w), Vo in X, (6)

where Hg(Q) is a subset of H1(2) whose members satisfy the homogeneous
essential boundary condition.

Periodic Wall-Bounded Domain

For a periodic domain between two walls, the boundary conditions add com-
plexity, but are still solvable for arbitrary flow conditions. For the formula-
tion, we restrict to domain with periodic faces, I',, whose normals 7, satisfy
the condition |é; - np| = 1 and ‘top’ and ‘bottom’ walls whose respective
normals ny satisfy +n - é3 > 0 (one-signed). The former restriction is
not significant since the periodic cut is ‘arbitrary’ to a certain extent, and
the latter restriction is due to implementation considerations. We note this
restriction allows a simple definition of the domain length

L= sup (x—y)-é. (7)
x,y€es

For periodic wall-bounded domains violating the restrictions, the following
formulation may apply as-is or with minor modifications.

We first note that the two boundaries I'y and I'_ are associated with
constant streamfunction values (due to Vi) = 0 derived from the no-slip
condition) ¥4 and 1_, respectively. To find the difference between the two,
we can integrate along an arbitrary curve I'*:

Yy - = F*Vw-ds

= /*(—UQél + up ég) -ds
= Q(u;I7) (8)

and note that difference in the streamfunction value is a functional evalu-
ation of the flow solution. Since we have a choice in the integration path,
we choose the path along of of the periodic faces (which are vertical by con-
struction) we also note for this domain, the functional @) can be evaluated
through a volume integral:

Qu) = /F " (9)

p

=m (L_l, uy) . (10)

We now turn to the problem of potential flow (i.e., w = 0) in the same
domain € corresponding to ¢ = 1. The solution to the problem is ¢ =
¢0 + ¢p, where ¢p € {wp, = :l:% :w € X} satisfies the essential boundary
conditions. Thus, the problem statement for ¢q is:

Find ¢g € X s.t.

a(v, ¢g) = —a(v, ¢p), Yv € X. (11)

We note that this problem is solvable and now we can decompose ¥ =
1Yo + Q¢ while noting that Q¢ satisfies the essential boundary conditions for
1) thereby restricting the lifted solution to Xg: ¥g € Xg. The weak form of
this decomposition is

a(v,) + Qa(v,) = m(v,w); (12)

however, we recognize from (11) that a(v,¢) = 0 and we recover (6). This
decomposition is completely independent of the domain specification with
the only requirement being the computation of Q(’s). For this domain,
that computation is trivial; but as you can imagine, this approach is widely
applicable in a numerical context.

As an example, for a periodic flow past a cylinder problem between
bounded walls, we can solve for ¢, where the solution is —1/2 on the
bottom wall and the cylinder, and 1/2 on the top wall; and ¢_, where the
solution is 1/2 on the top wall and —1/2 on the cylinder and bottom wall. A
linear combination of these potential flow solutions can account for arbitrary
flow conditions so that only (6) must be solved to find ¢ once corresponding
Q4 and Q_ are evaluated.

1 Implementation in Nek5000

The Nek5000 example which starts with a rectangular domain, Q = [0, 10] x
[0, 1], whose left and right boundaries are periodic, and whose top and bot-
tom boundaries are walls. We apply a deformation to the domain such that
the top wall is coincident with curve z9 = 1 + cos(mz1)/20 (the bottom
wall is 29 = 0). The main entry point for the streamfunction example is
the comp_psi subroutine called from userchk which reside in util.f. This
subroutine computes the streamfunction v (the first argument) from the
velocity specified in the second and third arguments, the rest being scalar
parameters. nproj is the dimension of the residual projection space (see
below), itype is the type of domain, and nf is the number of output fields
(1 will output the streamfunction only, the rest are the components of the
streamfunction and the vorticity). A streamfunction output from the ex-
ample is shown in Figure 1 at ¢ = 100. The internally, a general poisson
wrapper subroutine around hmholtz and cggo is used to solved the homoge-
neous streamfunction problem for 9. We show the temporal error behavior
of the streamfunction-derived velocity in Figure 2. Residual Projection (dis-
cussed later) does not affect the error, as expected.

Figure 1: 4 at t = 100. Plotted using NekToolKit.

—6
1.15 210 | .

No Projection
— — b-vector Projection

1.1+ .

1.05 V |

0.95 H 1

Relative L? velocity error
[

0.85 : x ' '
0 20 40 60 80 100

Time

Figure 2: Relative L? error in the streamfunction-derived velocity vs. the
velocity solution.

Residual Projection

We recognize that (6) has an equivalent minimization problem

g = arg znelglo f(zw), (13)
fzw) = %a(z, z) —m(z,w). (14)

If we have an orthonormalized set of previous solutions {z;}1 ; (i.e., a(z;, zj) =
dij), we would like a starting guess zo = > ; ¢;z; that minimizes f(z). We
now follow standard procedure of substituting the linear combination and
taking the derivative (product of two indexed variables imply summation

from 1 to n):

1

fcizizw) = 24 (cizi,cjzj) —m(cizi,w) (15)
= %clz —cim (z,w) (16)
if(cizi;u)) =cj —m(zj,w). (17)

86]'

Thus, the constants are ¢; = m(z;,w) and we can solve an easier (iterative)
problem with the separation ¥y = m(z;,w)z; + 1 for the problem:

a(v, V) = m(v,w) — a(v, z;) m(z,w). (18)

This residual projection is performed by Nek5000 for both the velocity
and pressure solves, but this algorithm is implemented in the initpproj,
pproj, and the postpproj subroutines in util.f for use in the poisson
subroutine. The comparison of solving for g with and without residual
projection is shown in Figure 3. We see significant improvement in the
iteration count, 75% overall and 94% for the last solve.

Number of CG Iterations

300

250
200
150
100

50 |

No Projection
5-vector Projection

| | | |

20 40 60 80
Time

Figure 3: Residual projection comparison.

100

	Implementation in Nek5000

