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A B S T R A C T   

The authors develop basic components of a parametric model-order reduction (pMOR) procedure targeting high 
Rayleigh-number buoyancy-driven flows. The pMOR is based on Galerkin formulation of the governing Bous-
sinesq equations using eigenfunction bases derived from proper orthogonal decomposition. The advantages of 
pMOR over parametric interpolation are demonstrated for quantities of interest (QOIs) with linear and nonlinear 
dependencies on the solution in low Rayleigh-number cases. Constraint-base and Leray-type regularizations are 
shown to offer significant advantages over the standard reduced-order Galerkin formulation in a variety of ex-
amples including 3D Rayleigh–Bénard flow at Rayleigh number 107 and turbulent flow in a half-pipe at Reynolds 
number 5300.   

1. Introduction 

High-performance computing and modern numerical algorithms 
have made high-fidelity fluid-thermal analysis tractable in geometries of 
ever increasing complexity. Despite continued advances in these areas, 
direct numerical (DNS), large-eddy (LES), and even unsteady Reynolds- 
averaged Navier–Stokes (uRANS) simulations of turbulent thermal 
transport remain too costly for routine analysis and design of thermal-
–hydraulic systems, where hundreds of cases must be considered. 
Reduced-order models (ROMs) offer a promising approach to leverage 
expensive high-fidelity simulations (referred to as full-order models or 
FOMs) by extracting from these detailed simulations low-dimensional 
dynamical systems that capture the principal features of the underly-
ing flow fields (Merzari et al., 2009, 2011). 

While FOMs for turbulent flows can require N = 107 − 1011 degrees- 
of-freedom, ROMs offer the potential of representing the flow dynamics 
governing the behavior of quantities of interest (QOIs) with only 
N ≈ 102–103 basis functions. The amplitudes of these basis functions are 
typically evolved as a system of nonlinear ordinary differential equa-
tions (ODEs) or through other mechanisms, for example, based on ma-
chine learning (e.g., Lui and Wolf, 2019), or even through linearized 
models such as the recently-developed Green’s function approach of 
Khodkar et al. (2019). For reasons of stability, Fick et al. (2018) replace 
ODE integration with a sequence of constrained-minimization problems 
that keep the ROM within observed bases of attraction. 

The overall objective of parametric model-order reduction (pMOR) is to 

build ROMs from FOMs that are generated over a small set of anchor 
points P α = {p*

1,…, p*
m} in the parameter space and to subsequently use 

the ROMs to inexpensively explore the parametric dependencies of the 
QOIs. To realize this goal, pMOR must address two problems: (i) the 
reproduction problem, in which a ROM accurately recovers QOIs for a 
turbulent flow simulation at a particular point in the parameter space (i. 
e., where the ROM and FOM are evaluated at the same p*

j ); and (ii) the 
parametric problem, in which the ROM provides estimates of QOIs at 
points p ∕∈ P α. To make the overall process efficient, the ROM should 
be equipped with error indicators to assess its fidelity at any given p, 
which allows one to optimally choose the anchor points p*

j , thus mini-
mizing the number of expensive FOMs required for effective parametric 
analysis (Fick et al., 2018). We typically choose the anchor points by 
evaluating the error indicator over a set of training points, P τ and 
selecting as the next element of P α the point that maximizes the error 
indicator in P τ. In the present study, we do not consider error-indicated 
selection of P τ; that topic is the focus of future work. 

In this report, we present some basic steps towards realizing pMOR 
for buoyancy-driven turbulent flows at modest Rayleigh numbers. 
Initially, we consider the use of proper-orthogonal decomposition (POD) 
bases in a Galerkin formulation of the momentum and energy equations 
for relatively low Rayleigh-numbers. We show that pMOR is viable and 
significantly more accurate than parametric interpolation for both linear 
and nonlinear QOI examples. Second, we consider the closure problem 
for higher Rayleigh number cases, where ROMs typically suffer from 
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inadequate dissipation because of the lack of high-wavenumber func-
tions in the POD approximation space. We consider two stabilization 
strategies. The first is a Leray-type regularization (Wells et al., 2017; 
Guermond et al., 2003), in which we mollify the nonlinear advection 
term by regularizing the advecting field (only). The second is based on the 
constrained-evolution approach of Fick et al. (2018), in which the 
snapshot data (introduced below) is reused to set limits on the basis 
coefficients in order to keep the dynamics of the system near the 
observed attractor. We demonstrate the relative success of these regu-
larization approaches for two- and three-dimensional Rayleigh–Bénard 
convection in box-type geometries at Rayleigh numbers as high as 107. 
Finally, we demonstrate the effectiveness of constrained ROM for tur-
bulent forced-convection in semi-circular pipe flow. 

The rest of the paper is organized as follows. In Section 2, we briefly 
present the POD and the standard Galerkin ROM for the Boussinesq 
equations. In Section 3, we illustrate pMOR for the particular case of 
unsteady axisymmetric Rayleigh–Bénard convection with linear and 
nonlinear QOIs. In Section 4, we present Leray and constraint-based 
stabilization for higher Reynolds–Rayleigh-number applications. In 
Section 5, we demonstrate the importance of stabilization for several 
two- and three-dimensional examples. In Section 6, we demonstrate the 
potential of a mixed FOM/ROM application for cases featuring disparate 
hydro- and thermal-timescales. Finally, we draw conclusions and discuss 
future work in Section 7. 

2. Galerkin-based ROM 

Our point of departure is the Boussinesq approximation for 
buoyancy-driven flow, 

∂u
∂t

+

(

u⋅∇
)

u+∇p = ν∇2u+ ηT ĝ,∇⋅u = 0, (1)  

∂T
∂t

+

(

u⋅∇
)

T = κ∇2T, (2)  

subject to appropriate Dirichlet or Neumann boundary conditions for 
the velocity, u, and temperature, T. Here p is the pressure, ĝ is the unit 
vector in the (positive) vertical direction, and ν, η, and κ are problem 
parameters based on the nondimensionalization of the problem. 

The ROM for the Boussinesq equations starts with a collection of K 
snapshots for velocity, uk(x) := u(x, tk) − ub and for temperature, 
Tk(x) := T(x, tk) − Tb corresponding to numerical solutions of the full- 
order model (FOM) at well-separated timepoints, tk, minus base states, 
ub(x) and Tb(x). The base states (typically time-averaged FOM solutions) 
satisfy any prescribed inhomogeneous boundary conditions, which are 
presently assumed to be time-independent. 

The FOM is based on the spectral element method (SEM) in the open- 
source code, Nek5000, and uses the PN − PN velocity–pressure coupling 
where the velocity and pressure are represented in the same polynomial 
bases.1 For any uk(x), we have a corresponding vector of basis co-

efficients uk
̲
= [uk

1…uk
N ]

T such that uk(x) =
∑N

j=1uk
j ϕj(x), with ϕj(x) the 

underlying spectral element basis functions spanning the FOM approx-
imation space, XN

0 ⊂ℋ1
0. Because the SEM is nodal-based, each uk

j rep-
resents the three velocity components at gridpoint xj in the spectral 
element mesh at timepoint tk. Similarly, the temperature is given by 
Tk(x) =

∑N
j=1Tk

j ϕj(x) ∈ XN
0 ⊂H

1
0. Here, H

1 is the set of square- 
integrable functions on Ω whose gradient is also square-integrable and 

XN ⊂H
1 is the finite dimensional SEM approximation space spanned by 

{ϕj(x)}. H 1
0 is the set of functions in H 1 that vanish wherever Dirichlet 

conditions associated with (2) are applied on the domain boundary ∂Ω. 
Bold-face indicates that the space is spanned by vector-valued functions 
having d components (d = 2 or 3) and, in the case of XN

0 ⊂ℋ1
0, that the 

functions vanish where Dirichlet conditions are applied for (1). 

2.1. POD bases 

For the velocity, we collect the snapshots into the a matrix UK =
[

u1
̲
…uK

̲

]

. From these, one forms the Gramian, U ∈ RK×K, with 

Uk,k′ := (uk,uk′ )L2 , where (v,u)L2 :=
∫

Ωv⋅udV is the L2 inner product. We 
use the L2 inner product throughout the paper. One could also consider 
the H1 norm and H1 semi-norm which have been considered in Iollo 
et al. (2000) and Fick et al. (2018). For the lower Reynolds number cases 
we have not found marked differences between the L2 and H1 inner 
products, so we use L2 throughout the examples in the text. A careful 
comparison for the elevated Reynolds number cases will be the subject 
of future work. 

Following standard POD methodology, the basis functions 
{

ζ
̲ n

}

for 

the ROM derive from the first N eigenmodes of U, 

Uz
̲ k

= λkz
̲ k

, z
̲ k

∈ RK , λ1⩾⋯⩾λK⩾0 (3)  

ζ
̲ n

:= UKz
̲ n

, n = 1,…,N < K. (4)  

The continuous functions in the SEM space corresponding to ζ
̲ n 

are 

ζn

(

x) :=
∑N

j=1

(

ζ
̲ n

)

j

ϕj(x
)

. 

We perform a similar procedure for temperature, generating TK :=

[
T
1

̲
…T

K

̲

]
and associated Gramian, T, having entries Tk,k′ := (Tk,Tk′ )L2 . We 

then solve the K × K eigenproblem, 

Tτ
̲ k
= λkτ

̲ k
, τ

̲ k
∈ RK , λ1⩾⋯⩾λK⩾0, (5)  

and define 

θ
̲ n

:= TKτ
̲ n
, n = 1,…,N < K. (6)  

The continuous functions in the SEM space corresponding to τ
̲ n 

are 

θn

(

x) :=
∑N

j=1

(

θ
̲ n

)

j
ϕj(x

)

. 

Remark 1. We note that, the POD construction provides a set of basis 

vectors Z :=

{

ζ
̲ 1

,…, ζ
̲ N

}

that minimizes the average distance between Z 

and UK in the chosen inner-product (here, (⋅, ⋅)L2 ) for any rank-N subset 
of UK. Thus, the motivation for POD is its approximation property, 
which uniformly distributes the error across the snapshot set. That 
property is not dependent on the subsequent choice of time-evolution of 
the ROM nor on any particular feature of the Navier–Stokes or Boussi-
nesq equations. One could, however, consider other norms that might 
favor minimization of the errors in one or more QOIs, which is a topic for 
future consideration. 

Remark 2. In the procedures that follow, we treat the velocity and 
temperature as independent state vectors. One could alternatively work 

1 As described in Orszag et al. (1986), Tomboulides et al. (1989) and Tom-
boulides et al. (1997), the PN − PN approach addresses the pressure boundary 
condition issue through temporal extrapolation of the velocity in curl-curl form 
to suppress growth of spurious divergence errors at the boundary. 
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with snapshot sets that combine the velocity and temperature into a 

single vector and thus form the Gramian from QK =

[

q
1

̲
…q

K

̲

]

, where 

q
k

̲
:=
[
uk Tk

]

. This approach reduces the online evaluation cost of the 

ROM by a factor of two because one has one-half the number of variables 
to track. We anticipate a future study to compare cost-benefit trade-offs 
of these two approaches. 

2.2. Galerkin formulation 

With (optimal) basis sets in hand, the Galerkin formulation follows 
by inserting the reduced-basis expansions, 

ũ

(

x, t

)

=
∑N

n=0
ζn

(

x

)

un

(

t

)

∈ Zb (7)  

T̃

(

x, t

)

=
∑N

n=0
θn

(

x

)

Tn

(

t

)

∈ Θb, (8)  

into the weak form of (1)–(2). In order to set the boundary conditions, 
we have augmented the trial (approximation) spaces Zb and Θb with the 
base states, ζ0 := ub and θ0 := Tb. The coefficients for these terms are 
prescribed: u0 ≡ T0 ≡ 1. The corresponding test spaces, Z0 := {ζi}

N
i=1 

and Θ0 := {θi}
N
i=1, satisfy homogeneous boundary conditions, as is 

standard for Galerkin formulations.In weak form, the problem can be 
stated as Find ũ ∈ Zb, T̃ ∈ Θb, such that, for all v ∈ Z0,S ∈ Θ0, 
∫

Ω
v⋅

dũ
dt

dV + ν
∫

Ω
∇v : ∇ũ dV = −

∫

Ω
v⋅(ũ⋅∇)ũdV + η

∫

Ω
v⋅
(

T̃ ĝ
)

dV, (9)  

∫

Ω
S

dT̃
dt

dV + κ
∫

Ω
∇S⋅∇T̃ dV = −

∫

Ω
S(ũ⋅∇)T̃ dV + κ

∫

∂Ωf

S∇T̃⋅n̂ dA. (10)  

We remark that the presence of the surface integral in (10) admits the 
possibility of an inhomogeneous surface flux qs := κ∇T̃⋅n̂ on some part 
of the domain boundary ∂Ωf ⊂∂Ω. If ζ0 and θ0 satisfy the prescribed 
Dirichlet conditions, then ũ and T̃ will satisfy these conditions as well. 
Note that the pressure term vanishes from (9) as a result of integration- 
by-parts because the test functions are weakly divergence-free and they 
are all homogeneous on the boundary. The continuity equation of the 
Navier–Stokes equations is also removed since Zb consists solely of 
weakly divergence-free basis functions. For temporal discretization of 
(9)–(10), we use a semi-implicit scheme with kth-order backward dif-
ferencing (BDFk) for the time derivative, implicit treatment of the 
negative-definite dissipation terms, and kth-order extrapolation (EXTk) 
of the advection and buoyancy terms. We typically use k = 3, to ensure 
that the imaginary eigenvalues associated with skew-symmetric advec-
tion operator are within the stability region of the BDFk/EXTk time-
stepper, as discussed in Fischer et al. (2017). When fully discretized in 
space and time, we get the following systems for the ROM basis co-

efficients u
n

̲ 
and T

n

̲ 
at timepoint tn, 

(β0

Δt
Bu + νAu

)
un = −

∑k

i=1
αi

[

Cu

(

u
)

u − ηBuT T
]n− i

− Bu

∑k

i=1

βi

Δt
un− i 

− νau,0, (11)  

(β0

Δt
BT + κ AT

)
T
n

̲
= −

∑k

i=1
αi

[

CT

(

u
̲

)

T
̲

]n− i

− BT

∑k

i=1

βi

Δt
T

n− i

̲
− κ a

̲ T,0
+ q

̲ s

.

(12)  

Here, u
̲ 

and T
̲ 

are the augmented basis vectors that include the base 

states for u
̲ 
and T

̲
; αi and βi are the respective BDFk/EXTk coefficients (e. 

g., for k = 2, α1 = 2,α2 = − 1,β0 = 3
2,β1 = − 4

2, and β2 = 1
2). A,B, and C 

represent the respective stiffness, mass, and advection operators, with 
entries 

Au,ij =

∫

Ω
∇ζ i : ∇ζ j dV (13)  

Bu,ij =

∫

Ω
ζ i⋅ζj dV (14)  

Cu,ikj =

∫

Ω
ζ i⋅
(

ζk⋅∇
)

ζ j dV (15)  

AT,ij =

∫

Ω
∇θi⋅∇θj dV (16)  

BT,ij =

∫

Ω
θiθj dV (17)  

CT,ikj =

∫

Ω
θi⋅
(

ζk⋅∇
)

θj dV. (18)  

BuT,ij =

∫

Ω
ζ i⋅ĝθj dV (19)  

q
̲ s,i

=

∫

∂Ωf

θi qs dA (20)  

Remark 3. The computational cost of time-advancing (11) and (12) is 
dominated by the application of the rank-3 advection tensors, Cu and CT, 
which requires O(N3) operations and memory references on each step. 
The remainder of the terms are O(N2) or less. Unfortunately, O(N3) is a 
very steep cost and prohibits practical consideration of, say, N > 500. 
While not considered here, strategies to mitigate this cost are of para-
mount concern. 

We have applied the Galerkin-ROM formulation (11)–(12) for 
several cases, including the basic test problem of two-dimensional flow 
past a cylinder at Reynolds number ReD = 100, for which N ≈ 20 pro-
vides a sufficient number of modes for accurate reproduction of the flow 
field and the lift history to four significant digits. As stated earlier, 
however, our objective is not reconstruction of the flow field. Rather, we 
aim to predict QOIs at parameter points p that are not in the set P anchor 

from which we draw our approximating bases. In the next section, we 
illustrate use of the Galerkin ROM for both the reproduction and pMOR 
problems in the case of a axisymmetric Rayleigh–Bénard convection. 

3. Parametric model order reduction 

Given that the parameters and QOIs for thermal-fluids applications 
are highly case specific, we introduce pMOR in this section in the context 
of a particular model problem. Specifically, we consider the temporal- 
behavior of the Nusselt number in axisymmetric Rayleigh–Bénard con-
vection, which was studied by Barkley and Tuckerman (1989). 

3.1. Axisymmetric Rayleigh–Bénard problem 

The spatial domain is a low aspect-ratio cylinder and, following 
(Barkley and Tuckerman, 1989), the problem is cast in cylindrical co-
ordinates with [r, z] ∈ [0,R] × [0,H] (R = 5, H = 1), so the flow is effec-
tively two-dimensional. For velocity, we have u = 0 on the upper, lower, 
and side walls. For temperature, we have T = 1 − z on those surfaces. At 
r = 0, the radial component of the velocity is zero while the vertical 
component and temperature have homogeneous Neumann conditions. 
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The problem is nondimensionalized with a viscous timescale, resulting 
in parameters ν = Pr, η = Ra Pr, and κ = 1, where Ra is the Rayleigh 
number and Pr is the Prandtl number. 

Above a critical Rayleigh number, Rac, this flow exhibits an unsteady 
phenomenon in which vortex rings formed at the outer edge of the 
cylinder push the interior vortex rings inwards and squeeze out the one 
at the center. The orientation of the vortices thus periodically flips, with 
the net effect being that we see a traveling wave of inward moving rings. 
For Ra > Rac, the period of this phenomenon increases as Ra⟶Rac. Our 
goal is to reproduce the FOM results as a function of ∊ = (Ra − Rac)/Rac 
over a range of Rayleigh numbers by performing FOM simulations at 
only one or two Rayleigh numbers. We take as our parametric domain 
∊ ∈ [1.60,2.60] and as our QOI the transition period, indicated by fluc-
tuations in the Nusselt number. By performing this study, we wish to 
establish the feasibility of pMOR for thermally-driven flows. Our FOM is 
based on the axisymmetric formulation in Nek5000 using a 4 × 1 array 
(r× h) of 15th-order spectral elements. The FOM is based on 3rd-order 
semi-implicit timestepping with timestep size Δt = 4× 10− 4. The 
physical parameters are Rac=1734, Pr = 10, domain radius R = 5, and 
height H = 1. From the FOM, the Nusselt number period is 41.200 for 
∊ = 1.60 and 15.984 for ∊ = 2.60, in accord with the results in Barkley 
and Tuckerman (1989). One snapshot from the problem for ∊ = 2.60 is 
shown in Fig. 1. 

3.2. pMOR setup 

Our parametric model-order reduction approach follows the p-greedy 
algorithm described in Fick et al. (2018) in which we combine basis sets 
from two points in the ∊-parameter space to form one large approxi-
mation space. We first start by running FOM simulations using ∊ = 1.60 
and ∊ = 2.60 to obtain two sets of snapshots, taken over 200 Time-Units 
and spaced equally by 0.1 Time-Units. Then, for each set, we form the 
velocity Gramian matrix by taking the inner product of the velocity 
snapshots and form the temperature Gramian matrix by taking the inner 
product of the temperature snapshots. For each set, using these Gramian 
matrices, we can obtain 20 dominant velocity modes and 20 dominant 
temperature modes. We use a total of 40 combined velocity modes and 
40 combined temperature modes from this procedure as the basis 
functions for the Galerkin projection. Once the basis functions for the 
velocity and temperature are generated, the various operators in the 
systems can be formed as shown in (13)–(20). (Note that the integrands 
must be modified to account for the axisymmetric coordinates. This 
modification is straightforward in Nek5000 because the operator in-
terfaces are independent of the number of space dimensions or type of 
domain.) Although the physics is fully coupled, the ROM time-stepping 
is performed separately for the velocity and temperature fields by the 
use of extrapolation for the advection terms. Thus, the 3rd rank tensors 
CT and CU are created with 40 basis functions for each field; resulting in 

403 entries2 in each of the advection tensors. In short, although we are 
using 80 total velocity and temperature basis functions, the total cost of 
evaluating the convection for both equations is 2 × 403 multiplication 
operations, instead of 803 multiplications.With this setup, we adjust the 
parameters in (11)–(12) to run the ROM for ∊ ∈ {1.6,1.65,…,2.6}. The 
endpoint data, ∊ = 1.6 and 2.6, are used to generate the parametric 
model while the interior points are used for verification of the pMOR 
procedure. Presently, we use the same timestep size for the ROM as for 
the FOM, but this choice is not strictly necessary. For each ∊, we obtain 
Nusselt number vs. time behavior after first having let the flow settle to a 
steady-periodic state for 100 time units. We extract the period from the 
subsequent 100-unit time interval. 

3.3. Computation of the Nusselt number 

The Nusselt number for this problem is defined as: 

Nu =
2H

R2ΔT

∫ R

0
Tz

(

r, 0, t
)

r dr, (21)  

where ΔT = 1 is the temperature differential between the upper and 
lower surfaces. Calculation of Nu by reconstructing the FOM tempera-
ture field from the basis coefficients will result in a heavy computational 
cost of O(N × N) where N is the total number of degrees of freedom for 
the FOM. 

Fortunately, because Nu is a linear functional in T, it can be calcu-
lated indirectly by computing the contribution from each basis function 
to the sum in the offline (FOM) phase without reconstruction of the 
solution at each timestep in the online (ROM) phase. Specifically, 

Nu

(

t

)

=
2H

R2ΔT

∫ R

0

∑N

i=0
Ti

(

t

)

θi,z

(

r, 0

)

r dr (22)  

=
2H

R2ΔT

∑N

i=0
Ti

(

t

) ∫ R

0
θi,z

(

r, 0

)

r dr (23)  

=
2H

R2ΔT

∑N

i=0
Ti

(

t

)

Ii (24)  

We calculate the Ii in the offline phase so we can determine the Nusselt 
number in the online phase without any knowledge of the FOM (i.e., 
SEM) bases. Thus, the computational cost of evaluating the Nusselt 
number at each timestep in the ROM is only O(N). 

To calculate the period of the Nusselt number, we subtract the mean 

Fig. 1. Stream-function (top) and temperature (bottom) from an FOM snapshot 
for axisymmetric Rayleigh–Bénard problem with ∊ = 2.60. 

Fig. 2. Nusselt number for ∊ = 1.60.  

2 The full CT contains 40 × 40 × 41 elements, with the extra elements arising 
from the inhomogeneous boundary term. 
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value from the data and measure the average time between successive 
downward zero-crossings over the final 100 time units. We note that the 
period is not a linear functional of the solution but is nonetheless 
accessible via an accurate ROM. 

3.4. pMOR results 

Figs. 2–4 show the Nusselt number histories for the FOMs and ROMs 
at ∊ = 1.60,2.35, and 2.60. The 1.60 and 2.60 cases correspond to an-
chor points in the pMOR study—the ROM bases derive directly from 
FOMs at these parameter values. The 2.35 case derives from projection 
onto the 40 × 2 basis vectors and is thus truly the result of pMOR-driven 
analysis. We remark that, even at the anchor points (e.g., ∊ = 1.60), the 

histories are not perfect. This discrepancy arises because the time- 
dependent ROM is not a perfect reconstruction of the FOM. 

In Fig. 5, we see good agreement between the FOM data and the ROM 
data. The largest error is found at ∊ = 1.60, with a difference of 1.08 (i. 
e., ≈2.6% relative error). Thus, for this problem, instead of running a 
FOM simulation for all 21 points, we can obtain fairly accurate results by 
running 2 FOM simulations and running pMOR on all the points. 
Furthermore, if a period value for an additional ∊ within the range is 
desired, the ROM, without any modification, can obtain that value fairly 
accurately. 

We note that the potential value of the pMOR procedure is clearly 
evident in this example. If one only had knowledge of the period at the 
points ∊ = 1.6 and 2.6, there would be little recourse but to estimate the 
periods at interior points through linear interpolation, which leads to 
≈20% overestimate of the period at ∊ ≈ 2. The low-rank dynamical 
system of the ROM does a remarkably good job of improving upon this 
estimate. 

4. Stabilization 

A significant issue with the standard Galerkin-based ROM at higher 
Reynolds numbers is that (11)–(12) can deviate substantially from the 
projection of the modes onto the FOM due to the presence of potentially 
spurious attractors. This unstable behavior is an artifact of modal 
truncation (often manifest as energy pile-up in the high wavenumber 
modal coefficients) and relates to the well-known closure problem in 
LES and other turbulence-modeling scenarios (Fick et al., 2018; 
Rempfer, 2000). The smoothness of the approximating modes {ζn}

prevents generation of adequate dissipation (through Re− 1(ζj, ζj)A) un-
less the corresponding coefficients have large amplitude. One can 
potentially resolve this issue by increasing N to the point where the 
reduced bases include modes capable of dissipating the energy. For 
turbulent flows, however, the number of required modes can be quite 
high, particularly in light of the O(N3) costs associated with the advec-
tion operators Cu and CT. Hence, for engineering applications, some sort 
of closure model is typically required to dissipate energy or otherwise 
stabilize the ROM.Here, we consider two stabilization approaches. The 
first is a relatively simple Leray-type regularization introduced in the 
ROM context by Wells et al. (2017). The second is the constraint-based 
ROM of Fick and co-workers (Fick et al., 2018). While our primary focus 
is on the latter, the Leray-based approach is both easy to implement and 
elegant. We feel compelled to consider it because of the insight it lends 
to POD-based reduced-order modeling. 

4.1. Leray regularization 

For the Navier–Stokes equations, Leray regularization amounts to 
filtering the advecting field, such that the momentum equation reads 

∂u
∂t

+

(

u⋅∇
)

u+∇p = ν∇2u+ ηT ĝ, (25)  

where u = F(u) is the result of some sort of smoothing or regularization 
of the current velocity field. As noted by Guermond et al., even just a 
small amount of regularization suffices to make gains in proving exis-
tence and uniqueness of the solution in the continuous case, a task that 
remains insurmountable for the full Navier–Stokes equations. Thus, 
Leray regularization is of interest both from a numerical (and physical) 
stabilization viewpoint and from a theoretical perspective. 

Guermond et al. (2003) discuss a Helmholtz filter of the form 

u =
(
1 − δ2∇2)− 1u, (26)  

which is a 2nd-order filter that suppresses modes of wavenumber k > 1/
δ at a rate ̃O(k2) and which can be implemented in general geometries 
(e.g., Mullen, 1999). 

Fig. 3. Nusselt number for ∊ = 2.35.  

Fig. 4. Nusselt number for ∊ = 2.60.  

Fig. 5. Period comparison of FOM and p-greedy ROM using two anchor points 
at ∊ = 1.60 and 2.60. 
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For Fourier-based discretizations, filtering is particularly simple as 
one can simply scale the wavenumber coefficients, ûk = σk ûk, where 
σk⟶1 as k⟶0 and σk⟶0 as k⟶∞. 

For the Galerkin-based ROM, the modification equivalent to (25) 
would be to replace ̃u by u in the energy Eq. (10) and to similarly replace 
the advector in the momentum Eq. (9) to yield 
∫

Ω
v⋅

dũ
dt

dV + ν
∫

Ω
∇v : ∇ũ dV = −

∫

Ω
v⋅(u⋅∇)ũdV + η

∫

Ω
v⋅
(

T̃ ĝ
)

dV. (27)  

Wells et al. (2017) consider several possible filters to map ũ to u. The 
simplest one, suggested by one of the authors, is to treat the POD modes 
as one would do with Fourier bases (personal communication, 2019). 
That is, one can simply damp out the amplitudes of the higher modes 
when constructing u in (27). In the following Leray-ROM examples, we 
do precisely that. We use a sharp cut-off filter in which we set a few of 
the highest-numbered basis coefficients to zero when constructing the 
advector, u. Notice that this approach, while blunt, also has the 
advantage of reducing the leading-order O(N3) cost of evaluating the 
advection terms. As seen in the examples at the end of this section, 
simple Leray regularization is remarkably effective and merits further 
development. One improvement is to use the differential filter (26), 
which is readily implemented in the POD bases by using (13) and (14). 
This approach was shown in Wells et al. (2017) to be superior to simple 
modal damping for the example of three-dimensional flow past a cyl-
inder at Re = 1000. 

4.2. Constrained optimization 

As an alternative to explicitly adding dissipation or other closure 
terms, Fick et al. (2018) suggest a novel strategy of replacing the 
equality (11) with a constrained minimization problem at each timestep 
that would keep the dynamical system near the attractors observed in 
the snapshot set. We briefly describe that approach here.The standard 
Galerkin formulation (11) requires the following system to be solved for 
the velocity at each timestep, 

Huun
̲
= gn

̲
, (28)  

where the Helmholtz matrix, 

Hu :=
β0

Δt
Bu + νAu. (29)  

is based on (13)–(14) and the right-hand side is 

gn

̲
= −

∑k

i=1

[
βi

Δt
Bu un− i

̲
+ αi

(

Cu

(

u
̲

)

u
̲
− ηBuT T

̲

)n− i
]

− νa
̲ 0
. (30)  

We note that Hu is a symmetric positive definite matrix. 
The idea behind the constrained formulation is to use information 

from the snapshot set to establish a priori bounds on the basis coefficients 

u
n

̲ 
by replacing (28) with the constrained optimization problem, 

un
̲
= arg min

u
̲
∈R N

1
2
‖Huu

̲
− gn

̲
‖

2
H− 1 , s.t. mj⩽un

j ⩽Mj. (31)  

where the constraints on the basis coefficients un
j , j = 1,…,N are derived 

from the observation snapshot set, UK. Let Γ be the N × K matrix with 
entries γjk := (ζj,uk)A, which correspond to the modal amplitudes for 
each snapshot uk. For each basis function ζj, we set mj = minkγjk and 
Mj = maxkγjk such that the ROM evolution of the basis coefficients is 
constrained by the observed values from the snapshot set. (In practice, 
each window [mj,Mj] is increased a few percent.) Thus, this scheme reuses 
the snapshot information to adjust the behavior of the dynamical system. 

To solve the inequality-constrained optimization problem, we 
modify the original objective function by adding barrier functions to 
convert (31) into a sequence of unconstrained problems with small 
parameter μk, 

ϕ

(

u
̲

)

:= f

(

u
̲

)

− μk

∑N

i=1

(
1

mi − ui
+

1
ui − Mi

)

, (32)  

where 

f
(

u
̲

)

=
1
2

uT
̲
Huu

̲
− uT

̲
g
̲
+

1
2
gT

̲
H− 1

u g
̲
. (33)  

For successively smaller values of μk we solve (32) with the Broyden–-
Fletcher–Goldfarb–Shanno (BFGS) method using the preceding solution 
as a starting point. By letting μk→0 as k→∞, the barrier problems (32) 
recover (31). 

We remark that each iteration of BFGS requires the solution of an 
approximate Hessian, Hl associated with the augmented objective 
function ϕ. Starting the procedure with H1 = H as the initial Hessian 
requires solving systems in H for each iteration l = 1,2,…, plus appli-
cation of a rank-2 Sherwin–Morrison type correction to effect the inverse 
of the updated Hessian (Nocedal, 1980). Note that the cost for solving 
the Hessian is O (N2) per iteration. We introduce a new approach that 
reduces the cost per iteration from O (N2) to O (N) and provides a sig-
nificant savings in the constraint-based ROM. The idea is to recast the 
unknowns into an H-orthogonal basis such that the initial Hessian is 
diagonal. Specifically, we consider the similarity transformation H =

WΛWT with WT an orthonormal rotation matrix. With substitutions 
u
̲
= Wû

̲ 
and g

̲
= Wĝ

̲
, the original objective function is transformed to 

f̂
(

û
̲

)

=
1
2

û
̲

T
Λû

̲
− û

̲

T
ĝ
̲
+

1
2

ĝ
̲

T
Λ− 1 ĝ

̲
, (34)  

where Λ is a diagonal matrix. Since the (one-time) transformation cost 
for a particular Hu is O(N3) and the transformation cost per time-step is 
O(N2), we do not increase the complexity of the problem. Also, we do 
not need to recompute the QOI factors since they can be computed in the 
original space. In other words, no additional offline-mode computation 
is required for each ROM run. 

To keep the simple (decoupled) form of the limits (32), we re- 
evaluate the limits in this transformed space, which can be done if we 
preserve the matrix Γ, computed in the off-line mode. Since Γ has only 
NK≪N entries it can be used in the online mode and typically needs to 
be referenced only at the beginning of the ROM advancement when the 
parameters (β0, Δt, ν) are set. The original limits were mj = minkγjk and 
Mj = maxkγjk, for j = 1,…,N. In this modified setting, the new limits are 
m′

j = minkγ′

jk and M′

j = maxkγ′

jk, where γ′

jk are the entries of 

Γ′

:= WT Γ.

Because W is orthonormal, these limits correspond to an N-dimensional 
bounding-box that contains the projected amplitudes in a rotated frame 
of reference. This new frame of reference simply reflects a different 
choice of norm, here the H-norm, which is a combination of the L2 and 
energy inner-products and is therefore just as physically justifiable as 
either of these norms on their own. In either framework, the solution 
recovers to that of (28) if the constraints are inactive. 

4.3. Costs of stabilization 

Examples of the online costs of the methods we’ve considered so far 
are presented in Table 1. The case under consideration is the lid-driven 
cavity at ReL = 30,000, which is described in the next section. The ROM 
integration time is 1500 convective time units. As expected, the 
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Galerkin- and Leray-ROM cases are comparable in time. The constrained 
optimization solvers are significantly slower, but still much faster than 
the SEM-based FOM, which was run with 256 spectral elements of order 
p = 7. We remark that there is room for significant improvement in the 
optimization solver as we did not use highly-tuned optimization pack-
ages that would minimize the number of iterations required for the 
interior-point methods that we employed to solve (31). 

5. Results for stabilized methods 

In the following, we present results for several examples in which we 
compare stabilized and unstabilized methods. We reiterate that our 
Leray-ROM examples do not represent an exhaustive study of this 
approach, but are included merely to show the potential of this 

remarkably simple strategy, as put forth in Wells et al. (2017). 

5.1. Lid-driven cavity 

Here, we apply these concepts to two model problems. First, we 
reproduce work done by Fick et al. (2018) with the Lid-Driven Cavity 
Problem. Then we add the advection–diffusion equation to the NSE to 
show the effect of the constrained optimization on a relevant QOI which 
is the Nusselt number. We also apply Leray regularization to compare 
the effectiveness of the two stabilization techniques. 

Following Fick et al. (2018), we consider the unsteady lid-driven 
cavity problem using parameter ν = 1

Re and η = 0 subject to steady 
boundary conditions. 
⎧
⎨

⎩

u = ub on Γtop × R +,

u = 0 on ∂Ω⧹Γtop × R +,

u = 0 on Ω × {0},
(35)  

where u : Ω × R +→R 2 is a two-dimensional vector field, Ω = [− 1, 1]2,
Γtop = {x ∈ Ω : x2 = 1}, and the Dirichlet datum is given by 

ub

(

x

)

=

[ (
1 − x2

1

)2

0

]

. (36) 

The FOM results were produced using Nek5000 (Fischer et al., 2008) 

Table 1 
Solve time comparisons for lid-driven cavity example of Fig. 6 integrated 
over 1500 convective time units, using N = 40 for the ROMs.   

Solve Time (s) 

Galerkin ROM 0.242 
Leray ROM 0.244 
Constrained ROM w/o Decoupling 156.4 
Constrained ROM w/ Decoupling 68.57 
SEM Full-Order Model 1112  

Fig. 6. Velocity magnitude comparison at t = 1740 between the FOM, and the Galerkin, Leray, and constrained ROMs with N = 20.  
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with 256 spectral elements of order N = 7 at Re = 30,000. In order to 
generate the ROM solution, we collect 500 snapshots at the sampling 
times {tk

s = 500 + Δtsk}
K
k=1 with Δts = 1 and K = 500, where the data 

are taken from the statistically steady state solution. For the lid-driven 
cavity problem, we also apply the Leray regularization for the ROM. 
The velocity magnitude at time t = 1740 is shown in Fig. 6 for the FOM, 
and for the Galerkin, Leray, and constrained ROMs, each using N = 20. 

Fig. 7 shows the sample mean and variance for the FOM, Galerkin 
ROM, Leray ROM, and constrained ROM. We observe that the results for 
the Leray regularization and the constrained ROM are superior to those 
of the Galerkin ROM. 

Fig. 8 shows the estimated TKE, 

TKE
(

t
)

=
1
2

∫

Ω
‖u
(

x, t
)

−

〈

u
〉(

x
)

‖
2
2, (37)  

where ‖⋅‖2 is the Euclidean norm. The Galerkin, Leray, and constrained 
ROMs using N = 40 are compared with the FOM. For the Leray regu-
larization, the last 50% of the modes are set to zero. Note that the per-
centage of modes to be filtered is not known beforehand. For this 
problem, we have tried filtering out 10%, 20%, 30%, 40% and 50%, and 
found that 50% produced the most accurate results. The question of 
optimal filter choice depends on the number of POD modes and on the 
problem and will be a topic of future study. 

To further demonstrate the effects of stabilization, we plot the co-
efficient behavior versus time. Fig. 9 clearly shows that, without regu-
larization, the coefficient for the first POD basis function ventures out of 
the range observed in the data. Other spurious phenomena include ef-
fects such as false stable steady flows. 

As thermal transport is one of our principal motivators, we consider 
an energy transport problem using parameter κ = 1

Re with the solution to 
the lid-driven cavity problem as the advecting field. The thermal 
boundary conditions are: 
⎧
⎨

⎩

T(x, − 1, t) = 0,
T(x, 1, t) = 1,
T(x, − 1, t) = T(x, 1, t) = 1.

(38) 

The QOI is the Nusselt number, which is the mean temperature 
gradient 

Fig. 7. Behavior of the sample mean and variance of the coefficients {uj
n}j for 

the lid-driven cavity with N = 40. 

Fig. 8. TKE behavior comparison for FOM, Galerkin ROM, Leray ROM and 
constrained ROM with N = 40. 

Fig. 9. Comparison of the first mode behavior for various stabilization tech-
niques with N = 40. 

Fig. 10. Heated lid-driven cavity Nusselt number vs. time for Galerkin ROM 
with various N. 
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Nu =

∫

Γtop
∇T⋅n̂dS
∫

Γtop
dS

. (39) 

Fig. 10 shows the Nu history for the FOM and Galerkin ROM for 
different values of N. We observe that, even with the unconstrained 
Galerkin approach, the accuracy of the QOI can be recovered as the 
number of modes increases from N = 10 to 80. Fig. 11, however, illus-
trates that the stabilized Leray and constrained approaches are able to 

produce accurate Nu with much lower N (as low as 10) than the standard 
Galerkin approach. 

5.2. 3D Rayleigh–Bénard convection 

Three-dimensional thermal transients are of great importance to 
many thermal–hydraulic design questions and are thus of primary in-
terest in our own ROM development efforts. Here, we test the ROM 
strategies on a 3D Rayleigh–Bénard problem in a box with aspect ratios 
W : W : H, where W = 1 and H = 4. The parameters are Pr = 0.71 and 
Ra = 1.1e5,1.1e6 and 1.1e7, which are implemented in (1)–(2) in 
convective time units by setting ν = (Pr/Ra)

1
2,κ = (PrRa)−

1
2, and η = 1. 

The boundary conditions for velocity are no-slip on all walls. For tem-
perature, the side-walls are insulated (∇T⋅n̂ = 0) and constant tem-
perature on top and bottom, T(x,y,z = ∓2) = ±1. Our FOM is based on 
the formulation in Nek5000 using an 8 × 8 × 32 array (x× y× z) of 9th- 
order spectral elements. The FOM is based on 3rd-order semi-implicit 
timestepping with variable Δt set such that the Courant number is 
approximately 0.5 throughout the simulation, including the thermal 
transient. 

Because this flow is three-dimensional and run at relatively high 
Rayleigh numbers the number of degrees-of-freedom is much greater 
than in the previous examples and these cases thus present a greater 
challenge for reduced-order modeling. Fig. 12 gives some indication of 
the number of active modes in the system in the fully-developed (sta-
tistically steady-state) regime as a function of Ra. On the left, we plot 
instantaneous temperature distributions from the FOM, and on the right 
we plot the fraction of energy, EN/E captured by the POD bases from 
1000 snapshots taken in the fully-developed flow regime. Here, EN =
∑N

j=1(ζj,ζj), and E := E1000. 
From Fig. 12, right, we see that about 150 modes are required to 

capture 90% of the energy at Ra = 1.1e7. We have computed the critical 
Rayleigh number for this case (the point at which ‖u‖ > 0) and find 
Rac ≈ 1559, which makes the corresponding ratios for our three cases to 
be r = Ra/Rac ≈ 70, 700, and 7000. Sirovich and Deane (1991) find that 
N ≈ 200 modes are required for EN/E = 90% when r = 30, which is a 
significantly more pessimistic outcome than our findings. Their case, 
however, corresponded to a unit-cube domain with periodic boundary 
conditions, which would support more degrees of freedom than our 
relatively narrow domain with walls. More recently, Puragliesi and 
Leriche (2012) examined the spectrum for Ra = 109 in a unit cube with 

Fig. 11. Heated lid-driven cavity Nusselt number vs. time for ROM with Leray 
regularization for various N. 

Fig. 12. Cross section at x = 0, y = 0 and z = 0 for FOM temperature at time t = 1292 with Ra = 1.1e5,1.1e6 and 1.1e7. Cumulative energy contribution of velocity 
POD modes for various Rayleigh numbers. The dotted line represents EN/E = 0.9 where EN =

∑N
j=1λ2

j and E =
∑K

j=1λ2
j where K is the number of snapshots and λi are 

the i-th eigenvalue of the Gramian. 
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homogeneous Dirichlet conditions on all walls for the case where the 

side walls were differentially heated (T
(

x = ±1
2, y, z

)

= ±1
2.). In this 

case, they found that N = 30 sufficed to capture 90% of the energy. More 
importantly, Puragliesi and Leriche noted that the basis vectors that 
account for the majority of the heat flux are not the most energetic POD 
eigenfunctions, which implies that there is potential for a more judicious 
choice of basis functions when pMOR is employed for thermal transport 
problems. 

In the present case, we are particularly interested in using the ROM 
(and, ultimately, pMOR) to capture thermal transients as rise time is of 
great interest in many thermal–hydraulics applications. To this end, we 
take as our QOI the mean temperature 
〈

T
〉

(t)xyz :=

∫

ΩT
(
x, t
)

dV
∫

Ω dV
. (40)  

The FOM starts with random fluctuations across all (N ≈ 1.5M) grid-
points, uniformly distributed on [ − 1,0]. This “cold” flow is then subject 
to boundary conditions ±1 at time t = 0+, such that the mean should 
rise to 〈T〉(t)xyz ≈ 0. For the ROM, we take as the base state the first of 
the snapshots, which occurs at time t ≈ 1. 

Fig. 13 shows the transient behavior of 〈T〉(t)xyz for the Galerkin, 
constrained, and Leray ROMs at each of the three Rayleigh numbers. For 
Leray, we have tried filtering 10%, 30%, 50% and 70% of the modes 
report the results for the 70% case. Note that for different Ra, the 
optimal percentage to be filtered is different. For Ra = 1.1e5, all three 
formulations do a reasonable job of tracking the rise times for N⩾100 
modes. For N = 20, the Galerkin and constrained ROM do not do well 
while, surprisingly, the Leray ROM is able to produce a mean 

temperature that is comparable to constrained ROM. Furthermore, with 
50% filtering (not shown), the Leray ROM with N = 20 is able to pro-
duce a even better mean temperature and is comparable to N⩾100 
modes. For Ra = 1.1e6, only the constrained and Leray ROM are able to 
track the QOI for N = 100 and 150. Moreover, the Leray ROM with 50% 
and 70% of modes filtered are able to track the QOI for N = 20. For Ra =

1.1e7, the Leray ROM is not stable for N = 20 with 70% of modes 
filtered (nor with 10%, 30% or 50%). While not terribly accurate in 
predicting the rise time, the constrained ROM is the only case that is 
stable for N = 20. Both the constrained and Leray approaches are ac-
curate for N⩾100. 

In Fig. 14, left, we compare 〈T〉 for Ra = 1.1e7 with 1000 snapshots 
taken in the statistically steady-state region, using the average of the 
snapshots as the base mode. As the figure shows, without constraints, the 
mean temperature has more oscillations due to the lack of dissipation. 
For N = 20, the constrained and Leray ROMs produce a better QOI than 
the Galerkin ROM with N = 100. We also plot in the column on the right 
of Fig. 14 the turbulent kinetic energy (TKE) without zeroth mode, 
which we denote as EJ :=

1
2
∑N

j=1u2
j . We can see clearly that, even with 

N = 100, the Galerkin ROM drastically over-predicts the TKE. Note that 
we also observe over-prediction of TKE in the Leray ROM. In this case, 
even the constrained case shows an over-prediction of the TKE by about 
a factor of 2–3, which indicates that more modes are likely needed to 
capture this particular QOI. The fact that the thermal QOIs of Fig. 13 are 
in good agreement with the FOM is supportive of the suggestions of 
Puragliesi and Leriche (2012) that TKE is not necessarily directly 
correlated with the modes governing thermal transport. 

Fig. 13. 3D Rayleigh–Bénard convection: Average temperature vs. time with Ra = 1.1e5,1.1e6 and 1.1e7 for Galerkin, constrained ROM, and Leray ROM with 
various N. 70% of modes are filtered out in Leray ROM.1000 snapshots are taken between the two vertical dotted lines which includes the transient and statistically 
steady state region. 
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6. ROM-FOM modeling for heat transfer 

A common situation in thermal–hydraulics problems is to have 
widely disparate hydro and thermal time scales. This is often the case, 
for example, for forced convection in long ducts, pipes, or rod bundles, 
where the time for the turbulence to reach (statistically) steady-state 
conditions scales as a function of the hydraulic diameter, Dh, but the 
thermal transit time scales as the domain length, L≫Dh. This situation is 
exacerbated in the case of conjugate heat transfer where the solid has 
thermal relaxation times ≫ the eddy turn-over times. In these cases, LES 
expends significant computational effort computing turbulent structures 
that have well-established (but not well known) statistics. Merzari et al. 

(2017) propose to resolve this scale disparity by using the full SEM basis 
representation to solve the transient thermal transport problem with a 
surrogate turbulent advector generated by a ROM for the hydrody-
namics (which, crucially, avoids having to compute the pressure). 

To test this ROM-FOM idea, we consider 3D turbulent heat-transfer 
problem in a half-pipe of length L = 15Dh with hydraulic diameter Dh =

4A/P = 1, where A is the half-pipe cross-sectional area and P is its 
perimeter. The parameters are Re = 5300 and Pr = 5.858. (In (1)–(2): 
ν = 1/Re, κ = 1/(PrRe), and η = 0.) The boundary conditions are pe-
riodic in the streamwise direction with heated side walls having uniform 
flux, q′′ = 1. The forcing term is adjusted in time to ensure unit mean- 
velocity at each timestep. For the thermal problem, we write 

T(x, y, z, t) = θ(x, y, z, t)+ γz, (41)  

where θ is L-periodic, θ(x, y, z, t) ≡ θ(x, y, z + L, t). Here, γ = q′P is the 
mean streamwise thermal gradient and is determined by conservation of 
energy. 

To develop the (hydro-only) ROM, the hydro FOM was run until the 
initial transient. 1000 snapshots were then collected over 1000 
convective time units in the statistically stationary flow. The snapshots 
were used to produce N = 200 POD modes, which were used as the bases 
for the Galerkin hydro ROM with and without constraints. The resultant 
velocity fields were used to solve the forced convection problem in the 

Fig. 14. 3D Rayleigh–Bénard convection; Left: Average temperature vs. time with Ra = 1.1e7 for Galerkin, constrained ROM, and Leray ROM with various N. Right: 
Turbulent kinetic energy (TKE) without zeroth mode vs. time with Ra = 1.1e7 for Galerkin, constrained ROM, Leray ROM with various N. 70% of modes are filtered 
out in Leray ROM. 

Fig. 15. Lambda 2 isocontour for Half-Pipe Flow at Re = 5,300.  
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half pipe and the Nusselt numbers were compared to those for the hydro- 
thermal FOM. Fig. 15 shows λ2 (Jeong and Hussain, 1995) isocontours 
for a single snapshot, which gives insight into the number of structures 
present in this flow at Re = 5300. 

In Fig. 16, we plot Nu = (Tw − Tb)
− 1, where Tw is the average wall 

temperature and Tb =
∫

wTdV/
∫

wdVis the bulk temperature based on 
the streamwise velocity, w. For this modest (but turbulent) Reynolds- 
number case, the Galerkin ROM with N = 200 modes exhibits rapid 
departure from the FOM-based results for Nu. On the other hand, the 
constrained ROM provides a reasonably close estimate of Nu, with about 
10% over-prediction. 

Although we have not done so, one could also consider using just the 
off-line, full-ROM, model for prediction of Nu in this case as we did in 
our earlier 2D examples. Our objective here, however, is to establish the 
feasibility of using ROM-FOM to break the time-scale disparity for 
thermal–hydraulics problems in which snapshots for the full-order 
model are never available for the temperature. 

7. Conclusions and future directions 

We have presented several technical components towards the 
development of a reduced-order modeling (ROM) capability that aims to 
harness the output of high-fidelity simulations on leadership computing 
facilities for thermal–hydraulic design studies. 

For the parametric problem, we have presented results for a p-greedy 
model-order reduction procedure applied to the problem of buoyancy- 
driven flows. We have demonstrated that the technique is capable of 
accurately predicting a challenging QOI—the period of roll-reversal—as 
a function of Rayleigh number for the highly nonlinear problem of 
Rayleigh–Bénard convection in a low aspect-ratio cylindrical domain. 

At higher Rayleigh (and/or Reynolds) numbers, stabilization is 
required for POD-based ROMs. We have demonstrated that both Leray 
and constraint-based regularization generate more stable and more ac-
curate solutions than the standard Galerkin-ROM formulation. Examples 
demonstrated that the constraint-based approach, which incorporates 
prior information about the long-time attractor in the ROM, can produce 
accurate transient solutions in 3D Rayleigh-Bénard convection at Ra =

1.1e7 and in forced convection in a half-pipe Re = 5300. 
Despite the success of the methods shown here, several de-

velopments remain to make pMOR viable for engineering design. The 
first of these is a need to incorporate more (or better) modal information. 
Presently, the O(N3) costs in the ROM reconstruction phase prohibit 
consideration of N much larger than 200. There are several possible 
mitigation strategies. One idea is the discrete empirical interpolation 
method (Chaturantabut and Sorensen, 2010), which leads to low-rank 
approximations of the advection operator. For example, one can split 

the velocity as u = U+u′ and then account for U⋅∇U,U⋅∇u, and u⋅∇U, 
but neglect the u⋅∇u term (again giving rise to the classic turbulence 
closure problem). In our discrete model, this separation would lead to 
modeling the convective term by a interpolation function on the velocity 
coefficients in Eq. (11). (In some sense, sharp-cut-off Leray regulariza-
tion is an example of this approach.) Another approach is to develop 
ROM and pMOR strategies that are optimized for the quantities of 
interest. 

As indicated in the introduction, error indicators are of paramount 
importance for efficient pMOR design tools as they allow one to opti-
mally select anchor points. We have initiated development of error in-
dicators following the approach described in Fick et al. (2018). From the 
results of Section 5, it seems clear that error indicators that focus on the 
QOIs will be important for overall efficiency. Another concern is that the 
p-greedy pMOR strategy leads to an increase in N. In Fick et al. (2018), 
an h-greedy strategy is proposed in which one changes the approxima-
tion space, rather than augmenting the space, as the parameter p moves 
through the range of anchor space, P α. 

CRediT authorship contribution statement 

Kento Kaneko: Writing - original draft, Writing - review & editing. 
Ping-Hsuan Tsai: Writing - original draft, Writing - review & editing. 
Paul Fischer: Supervision, Writing - review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

This research is supported by the DOE Office of Nuclear Energy 
under the Nuclear Energy University Program (Proj. No. 
DE_NE0008780). Simulations were performed at the DOE Office of 
Science User Facility ALCF (Argonne Leadership Computing Facility). 

References 

Barkley, D., Tuckerman, L.S., 1989. Traveling waves in axisymmetric convection: the 
role of sidewall conductivity. Physica D: Nonlinear Phenomena 37 (1–3), 288–294. 

Chaturantabut, S., Sorensen, D.C., 2010. Nonlinear model reduction via discrete 
empirical interpolation. Journal of Scientific Computing 32 (5), 2737–2764. 

Fick, L., Maday, Y., Patera, A.T., Taddei, T., 2018. A stabilized POD model for turbulent 
flows over a range of Reynolds numbers: Optimal parameter sampling and 
constrained projection. Journal of Computational Physics 371, 214–243. 

Fischer, P., Kruse, J., Mullen, J. Tufo, H., Lottes, J., Kerkemeier, S., 2008. Nek5000: Open 
source spectral element CFD solver, Argonne National Laboratory, Mathematics and 
Computer Science Division, Argonne, IL, see https://nek5000.mcs.anl.gov. 

Fischer, P., Schmitt, M., Tomboulides, A., 2017. Recent developments in spectral element 
simulations of moving-domain problems. Fields Institute Communications, Springer 
79, 213–244. 

Guermond, J.-L., Prudhomme, S., Oden, J.T., 2003. An interpretation of the Navier- 
Stokes-alpha model as a frame-indifferent Leray regularization. Physica D 177, 
23–30. 

Iollo, A., Lanteri, S., Désidéri, J.-A., 2000. Stability properties of POD–Galerkin 
approximations for the compressible Navier-Stokes equations. Theoretical and 
Computational Fluid Dynamics 13 (6), 377–396. 

Jeong, J., Hussain, F., 1995. On the identification of a vortex. Journal of Fluid Mechanics 
285, 69–94. 

Khodkar, M., Hassanzadeh, P., Nabi, S., Grover, P., 2019. Reduced-order modeling of 
fully turbulent buoyancy-driven flows using the Green’s function method. Physical 
Review Fluids 4, 1, 013801. 

Lui, H.F.S., Wolf, W.R., 2019. Construction of reduced-order models for fluid flows using 
deep feedforward neural networks. JFM 872, 963–994. 

Merzari, E., Ninokata, H., Mahmood, A., Rohde, M., 2009. Proper orthogonal 
decomposition of the flow in geometries containing a narrow gap. Theoretical an 
Computational Fluid Dynamics 23 (5), 333–351. 

Merzari, E., Pointer, W.D., Fischer, P., 2011. A POD-based solver for the advection- 
diffusion equation. In: ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. 
American Society of Mechanical Engineers Digital Collection, pp. 1139–1147. 

Fig. 16. Nusselt Number Comparison between Constrained ROM and FOM for 
Re = 5,300, Pr = 5.858. 

K. Kaneko et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0029-5493(20)30360-5/h0005
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0005
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0010
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0010
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0015
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0015
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0015
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0025
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0025
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0025
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0030
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0030
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0030
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0035
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0035
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0035
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0040
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0040
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0045
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0045
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0045
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0050
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0050
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0055
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0055
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0055
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0060
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0060
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0060


Nuclear Engineering and Design 370 (2020) 110866

13

Merzari, E., Obabko, A., Fischer, P., Halford, N., Walker, J., Siegel, A., Yu, Y., 2017. 
Large-scale large eddy simulation of nuclear reactor flows: Issues and perspectives. 
Nuclear Engineering and Design 312, 86–98. 

Mullen, J., 1999. Development of a Parallel Spectral Element Based Large Eddy 
Simulation Model for the Flow of Incompressible Fluids in Complex Geometries, Ph. 
D. thesis, Brown University, division of Engineering. 

Nocedal, J., 1980. Updating quasi-Newton matrices with limited storage. Mathematics of 
Computation 35 (151), 773–782. 

Orszag, S., Israeli, M., Deville, M., 1986. Boundary conditions for incompressible flows. 
Journal of Scientific Computing 1, 75–111. 

Puragliesi, R., Leriche, E., 2012. Proper orthogonal decomposition of a fully confined 
cubical differentially heated cavity flow at Rayleigh number Ra = 109. Computers & 
Fluids 61, 14–20. 

Rempfer, D., 2000. On low-dimensional Galerkin models for fluid flow. Theoretical and 
Computational Fluid Dynamics 14 (2), 75–88. 

Sirovich, L., Deane, A.E., 1991. A computational study of Rayleigh–Bénard convection. 
Part 2. Dimension considerations. Journal of Fluid Mechanics 222, 251–265. 

Tomboulides, A., Israeli, M., Karniadakis, G., 1989. Efficient removal of boundary- 
divergence errors in time-splitting methods. Journal of Scientific Computing 4, 
291–308. 

Tomboulides, A., Lee, J., Orszag, S., June 1997. Numerical simulation of low mach 
number reactive flows. Journal of Scientific Computing 12, 139–167. 

Wells, D., Wang, Z., Xie, X., Iliescu, T., 2017. An evolve-then-filter regularized reduced 
order model for convection-dominated flows. International Journal for Numerical 
Methods in Fluids 84 (10), 598–615. 

K. Kaneko et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0029-5493(20)30360-5/h0065
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0065
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0065
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0075
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0075
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0080
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0080
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0085
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0085
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0085
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0090
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0090
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0095
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0095
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0100
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0100
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0100
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0105
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0105
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0110
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0110
http://refhub.elsevier.com/S0029-5493(20)30360-5/h0110

	Towards model order reduction for fluid-thermal analysis
	1 Introduction
	2 Galerkin-based ROM
	2.1 POD bases
	2.2 Galerkin formulation

	3 Parametric model order reduction
	3.1 Axisymmetric Rayleigh–Bénard problem
	3.2 pMOR setup
	3.3 Computation of the Nusselt number
	3.4 pMOR results

	4 Stabilization
	4.1 Leray regularization
	4.2 Constrained optimization
	4.3 Costs of stabilization

	5 Results for stabilized methods
	5.1 Lid-driven cavity
	5.2 3D Rayleigh–Bénard convection

	6 ROM-FOM modeling for heat transfer
	7 Conclusions and future directions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References


